If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+21x+17=0
a = 4; b = 21; c = +17;
Δ = b2-4ac
Δ = 212-4·4·17
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-13}{2*4}=\frac{-34}{8} =-4+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+13}{2*4}=\frac{-8}{8} =-1 $
| -5n+4n=3 | | -3x-1=x-5 | | -3.18=5(3.2y-0.7) | | (7-y)(5y-1)=0 | | 1-3p-2p=11 | | (x+5)^2-26=0 | | 6b-4(3-2b)=72 | | 4x-2/12=5/3 | | 8=m+3+4 | | 115-3x=52 | | r-1+6r=13 | | 2x+5+3x+15=180 | | 38=-3x+5(x+6) | | ½(w+16)=24 | | 1/3z-6=36 | | r+2+6=14 | | 4^(x+2)+4^(x+4)=1536 | | p+10+15*3=11 | | (-5x^2+6)/(X^2-1)=0 | | 1n-1=8 | | 3z+8=24-z | | 3z+8=-z | | -16=-6v+2v | | 3y-7=-50 | | -3a-4-a=0 | | 1+2x-3=-8 | | 5x-80=-50 | | 23=7x=5-4x | | 8(c-1)=-2(c-41) | | 6x^2+12x-38=10 | | -8(g+9)=2(g+4) | | 6x-13=9+5x |